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Abstract 

We investigate the differential calculus defined by Ashtekar and Lewandowski on projective 
limits of manifolds by means of cylindrical smooth functions and compare it with the C” calculus 
proposed by Frohlicher and Kriegl in a more general context. For products of connected manifolds, 
a Boman theorem is proved, showing the equivalence of the two calculi in this particular case. 
Several examples of projective limits of manifolds are discussed, arising in String Theory and in 
loop quantization of Gauge Theories. 0 1999 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

In the recent literature in mathematical physics one often encounters spaces which are 
projective limits of manifolds. In the loop quantization of Gauge Theories as Quantum 
Gravity and the 2D Yang-Mills Theory, projective families of manifolds are widely used 
to obtain a compact space d/G extending the space of connections modulo gauge transfor- 
mations. This procedure allows one to define a diffeomorphism invariant measure on d/G 
in order to get a Hilbert representation of Wilson loop observables ([3,4,8]; for a general 
reference for Loop Quantum Gravity, see also the bibliography in [43]). 

Another example arises in String Theory. Actually, Nag and Sullivan considered in [41] 
the projective family of all finite sheeted compact unbranched coverings of a given closed 
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Riemann surface of genus g 1 2, obtaining a universal object, called the universal hyper- 
bolic solenoid. To this projective limit of surfaces corresponds the universal Teichmuller 
space I,, the inductive limit of the family of Teichmtiller spaces on each surface. lm con- 
tains the Teichmtiller spaces of surfaces of every genus g 2 2, so that it could simultaneously 
parametrize complex structures on surfaces of all topologies and it has been proposed as a 
fundamental object for a nonperturbative quantization of String Theory [40]. 

One can ask whether projective limits of manifolds admit a suitable differentiable struc- 
ture. Among projective limits of manifolds there are manifolds (ordinary or modelled on 
infinite-dimensional spaces) and spaces which are not manifolds. Examples of such pathol- 
ogy are compact groups. The notion of projective limit was introduced by Weil [48] just to 
discuss the structure of locally compact groups and Weil himself proved that every compact 
group is the projective limit of a family of compact Lie groups. This does not longer mean 
that any compact group admits some differential structure. Actually, a projective limit of a 
nontrivial family of compact Lie groups cannot be a Lie group. What is worse, it is well 
known that compact groups can have a wild topological structure. This example shows that, 
if one does research for a differential structure on projective limits of manifolds, one is forced 
to a profound enlargement of the usual notions of differential structure, still remaining on 
commutative differential calculi. 

This problem seems not so evident in the case of the hyperbolic solenoid introduced by 
Nag and Sullivan, since this space is just a foliated surface, a well-understood differential 
structure [37]. There are serious physical motivations to introduce a differential calculus and 
differential operators on projective limits arising in loop quantization. These limits can be 
very different, so that a general treatment appears to be necessary. A solution of the problem 
has been proposed by Ashtekar and Lewandowski in [5] by choosing as ring of smooth 
functions the set of the cylindrical smooth functions. Roughly speaking, on a projective 
limit of manifolds M = lej,~ Mj, one considers to be apt to differential calculus just the 

smooth functions on some manifold Mj of the family. Cylindrical differential forms, vector 
fields and other differential objects are consequently defined. In Section 2 we introduce 
projective limits of manifolds, give a short account of Ashtekar-Lewandowski calculus, set 
up tangent bundles and give some simple examples. 

In the mathematical literature several attempts to generalize differential calculus and 
the notion of differential manifold can be found [ 19,26,36,38]. In this paper we compare 
the calculus proposed by Ashtekar and Lewandowski with the Coo calculus, developed 
by Frolicher and Kriegl in [19], of which we give a short account in Section 3. The Coo 
calculus assumes as starting point the duality between smooth curves and smooth functions 
expressed by the Boman theorem for ordinary manifolds [ 121: 
(1) for every ordinary manifold M a path c : R + M is smooth if and only if f o c is 

smooth for every smooth function f : M -+ R; 
(2) a map q : M + N, where N is an ordinary manifold, is smooth if and only if p o c is 

a smooth curve in N for every smooth curve c in M. 

A C” structure on a set X is accordingly defined assigning a suitable set of “curves” 
c : R + X and a suitable set of “functions” f : X -+ R such that f o c E COO(R, R). The 
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Cm category contains ordinary manifolds and has many nice mathematical properties; in 
particular, it is Cartesian closed and closed with respect to projective limits. The C” calculus 
has been proved fruitful in locally convex vector spaces where straight lines assure a richness 
of curves to get a good differential calculus. Besides, the notion of Cw structure and Co3 
maps revealed useful in Gauge Theory to characterize the holonomy maps associated to 
smooth connections [3 11, as reported in Example 7, Section 3, even if differential calculus 
is not developed in this setting. In the general case the Coo category appears too large to 
treat differential calculus, since the extension of the class of Coo functions depends on 
the richness of curves and the theory works, as it stands, only when a balance between 
curves and C” functions is assured. Otherwise one clashes with an excess of Cm functions 
and with the difficulty of defining a good differential for every Cm function. In a general 
context some additional requirements on the duality between curves and functions could 
be necessary. 

For projective limits of manifolds, cylindrical smooth functions are just a generating set 
for the canonical Coo structure and the class of Cc0 functions can be remarkably larger. 
The ring of cylindrical smooth functions appears as the minimal choice of functions to be 
considered in differential calculus, and the ring of Coo functions the maximal one. 

There are examples of projective limits of manifolds where Coo calculus works well 
and defines the natural differential calculus: for instance, the spaces RN and the manifold 
P(M, N) of jets of infinite order of maps between two ordinary manifolds M and N, 
introduced in Section 2 and discussed in Section 3. These spaces are FrCchet manifolds, on 
which the Co3 calculus gives the standard differential calculus. Here the choice of cylindrical 
smooth functions appears as an unnecessary, even if not severe, restriction. 

The two calculi agree in the particular case of products of compact connected manifolds. 
Actually, in Section 4 we prove a Boman theorem for cylindrical smooth functions on such 
products. 

In Section 5 we give a first characterization of cylindrical smooth functions in terms of 
the Coo structure for projective limits of compact connected manifolds. One cannot expect 
that C” functions are cylindrical in the general case. The most relevant obstruction is 
the occurrence of many path components which could cause a plenty of Coo functions. 
Some examples of projective limits of compact connected manifolds are discussed which 
support a natural structure of foliated manifold, as the hyperbolic solenoid. In these cases the 
appropriate ring of “smooth’ functions lies between the ring of cylindrical smooth functions 
and the ring of Coo functions. 

Finally, we give a short account of the projective limits introduced in Gauge Theory to 
obtain a compact space 2 extending the space of smooth connections A [5]. This is the 
most interesting case of projective limits of manifolds, since the projections are highly not 
standard, so that the relation between Coo and cylindrical smooth functions is difficult to 
establish. One could use suitable projective subfamilies or different projective families to 
obtain a compact extension of A, chosen on the basis of physical and mathematical criteria. 
We suggest that a natural mathematical requirement to select these families could be the 
possibility to obtain a satisfactory version of Boman theorem. 
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2. Projective limits of manifolds 

We start with some standard facts about projective families and projective limits of 
(Hausdorff) topological spaces (see [ 171 or [ 181). 

Aprojectivefamily of topological spaces is a family {Xj, nij, .I}, where the index set J is 
a directed set, Xj is a topological space for each j E J and the projections nij : Xj + Xi, 
defined for every pair i, j E J with i 5 j, are continuous maps such that njj = idxj and 
"ijnjk = nik fOri 5 j 5 k. 

Anelement(xj}j,JoftheproductnjeJ Xj is called a thread if nijxj = xi for i < j. The 
set X = l@j,J Xj of all threads is a closed subset of the product and it is called the limit of 

the projective famiZy (or the projective limit). The maps nj : X + Xj nj ((xi}j,~) := xj, 
also called projections, are continuous and open since a basis of the topology of X consists 
of the subsets rcJr’ (Uj), with Uj open in Xj. 

Let (Xj , nij, J} and (X; , nij, J} be projective families of topological spaces, with limit 
X and X’, respectively. A family (@j}jEJ of continuous mappings @j : Xj + Xj satisfying 
the coherence condition 

llT~jO@j=#jOJCij VjE j, ilj 

is said to be a projective family of mappings. The limit of the projective family of mappings 
(#j}jeJ is the map C$ : X -+ X’ defined by 

The limit map 4 is continuous and is a homeomorphism whenever each #j is a homeomor- 
phism. 

Each directed subset Jo of J induces a projective subfamily (Xj, nij, Jo}. If X0 de- 
notes the limit of the induced projective subfamily, the map no, : X + Xc, defined by 

TJfl (1XjljE.T) = (XjljEJg 7 is continuous and open (however rr~,, may not be surjective). 
If the directed subset JO is cofinal in J, then X and X0 are homeomorphic. We recall that 
Jo c J is a cofinal subset if for every j E J there exists ju E Jo with j 5 ja. 

A projective family (Xj , Xii, J} is said trivial if the projections nij are homeomorphisms 
for j belonging to some cofinal subset JO. The limit of a trivial family is homeomorphic to 
Xj, for every JO E Jo. 

If the index set J admits a countable cofinal subset, the projective family (Xj , nij, J} is 
called a projective sequence; in this case there exists a cofinal subset which can be identified 
with N. 

A projective family is said to be surjective if the projections nj are surjective. This implies 
that all projections nij are onto. A projective family of compact spaces in which the nij 
are surjective maps is surjective. The same property holds for projective sequences of (not 
necessarily compact) spaces. 

The limits of general projective families could be empty or inherit only few topological 
properties. More regular are limits of surjective families or limits of compact spaces: a 
projective limit of compact spaces is nonempty and compact. The limit of a surjective 
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projective family of connected spaces is connected. Beware, however, that even limits of 
surjective projective sequences of path connected compact sets could not be path connected 
(see Examples 3-5 below). 

We denote by CyZj (X) for j E J the ring of the functions f : X + R of the form f = 
n]tfj, for a continuous function fj : Xj + R (i.e. f is the pullback of some fj E C(Xj)). 
The graduated ring CyZ(X) of cylindrical functions on X is the union UjcJ Cylj(X). The 
mapnj* : C(Xj) + CYZ(X) X,Tf := f o nj is a ring homomorphism with range Cylj (X) 
and is injective if nj is onto. Thus for surjective projective families each ring Cy Zj (X) can 
be identified with the ring C(Xj). 

We say that f : X + R is locally cylindrical if for each x E X there esists an open 
neighbourhood U, of x such that the restriction fru, agrees with the pullback of some 
fj E C(Tj (U,)). Locally cylindrical functions are continuous. 

Projective limits of ordinary (i.e. finite dimensional paracompact smooth) manifolds and 
their differential properties are the argument of this paper. Such limits are often considered 
in the literature and are topological spaces which in general do not support the structure of 
differential manifold. Here a generalization of ordinary differential calculus is introduced 
appropriate to these spaces. We start with a formal definition to select a relevant class of 
projective limits. 

Definition 1. A projective family { Mj , nij, J} such that 
(i) Mj are (ordinary) manifolds, 

(ii) the projections nij : Mj + Mi are surjective submersions, 
will be called a projective family of manifolds and its projective limit M a projective limit 
of manifolds. 

To introduce elements of a differential structure on M one can use an algebraic method: 
the starting point is the choice of a suitable ring of functions on which vector fields are 
introduced as (suitable) derivations. Using algebraic definitions vector fields, differential 
forms, Lie brackets, Lie derivatives and other differential operators can also be defined. This 
is a procedure widely used also in noncommutative geometry [ 15,331 and on supermanifolds 
[23]. For a projective limit M of manifolds a natural choice appears to be the (Abelian) ring 
of smooth cylindrical functions 

CyZm(M) := u CyZj00(M), 
jE.l 

where CyZjF(M) := {7tj* fj 1 fj E C”(Mj)} can be identified with C”(Mj) if the projective 
family is surjective. One could also use the ring of all smooth locally cylindricalfunctions 
of M, denoted by C yZ,O” (M) . Of course, for a projective limit M of compact manifolds this 
ring agrees with Cyl CC (M) . The differential calculus based on CyP (M) was proposed by 
Ashtekar and Lewandowski in [5]. We shortly discuss this structure. 

Even if differential calculus on M can be introduced on the basis of purely algebraic 
definitions, it is very natural to start more geometrically defining an appropriate “tangent 
bundle”. To the projective family {Mj, nij, J} we can associate the projective family of 
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manifolds {TMj, Tnij, .I}, whose limit we denote by TM. One easily sees that the limit 
map t : TM + M of the projections rj : TMj + Mj is continuous and onto. 

We refer to (TM, t, M) as the tangent bundle of M. The fibre at x, the tangent space at 
x, is the vector space T, M = lim J Txj Mj (which is a complete nuclear locally convex tJE 
vector space by Theorem 7.4 in [45]). Notice, however, that this “bundle” does not satisfy 
the local triviality condition. 

The tangent bundle 734 plays a role very similar to the tangent bundle of a manifold. 
Actually, for every f E CyP(M), f = nJTg,j the differential 

df : TM + R, df(v,) := dx,gj(vxj) = (Tn~dgj)(~x), 

is well defined, since the differential dxjgj (uxj) does not depend on the representation 
f = n]Tgj. One easily recognizes that df E CyZJ?(TM) whenever f E CyZJ?(M) and its 
restriction d, f on the fibre TX M is continuous and linear. Every u, E T, M defines a grade 
preserving derivation at x on CyP (M) by 

f 4 &,f := df(u,). 

We now assume that the projective family of manifolds is surjective and denote by D, a 
grade preserving derivation at x defined on CyP(M) and by D,, : C”(Mj) + C”(Mj) 
the induced derivation at xj, for each j E J. By finite dimensionality of Tx, Mj there exists 
a (unique) uj E Tx, Mj such that Dx,i is the Lie derivative L,, . Since Dxi = D, o nil;. for 
i 5 j, one easily recognizes that the family { uj)j,J is a thread. Thus a ux E TX M is defined 
such that L, = D,. Therefore the following proposition holds. 

Proposition 2. Let {Mj ,7tij, J} be a surjective projective family of manifolds with limit 
M. For every x E M the tangent space T,M is isomorphic with the space of all grade 
preserving derivations at x on CyP(M). 

Remark. The differential df is well defined also if f E CyZ,00(M). Moreover, every tan- 
gent vector at x defines a grade preserving derivation at x on the graded ring Cy Zy (M) and, 
for surjective projective families, T, M is isomorphic with the space of all grade preserving 
derivations at x of the ring CyZ,oO (M). 

It is natural to define vector fields on M as derivations on CyP(M). Given a surjective 
projective family {Mj, nij, J}, grade preserving derivations D on CyP (M) induce on each 
Mj a derivation Dj and the family { Dj}jcJ satisfies the coherence condition (nij)* Dj = Di 
for i i j. The Lie bracket [Dl , Dz] of two grade preserving derivations is the derivation 
associatedtothefamily{[Dr;j, Dz;j]}jeJ. Thus grade preserving derivations on CyP (M) 
form a Lie algebra. 

To every grade preserving derivation on CyP (M), a family {Xj},jeJ of vector fields 
with n;Xj = Xi for j 5 i is associated and a section X : M + TM is defined by 
the limit of these vector fields. We remark that one can recover the fields Xj by X since 
TEj o X : M + TMj depends only on the components in Mj and that this property 
characterizes limits of vector fields. The set of these limits is a Lie algebra with [X, Y] := 



M.C. Abbati, A. ManiUJoumal of Geometry and Physics 29 (1999) 3543 41 

lgj,~[Xj, Yj]. Conversely, to every limit of vector fields a grade preserving derivation 

D on CyP(M) is associated (and Lie brackets are conserved). Thus we get the next 
proposition. 

Proposition 3. Let M be the limit of a surjectiveprojectivefamily of manifolds (Mj , Xij, J}. 
Grade preserving derivations on CyP (M) and projective limits of vector fields are iso- 
morphic Lie algebras. 

We remark that the objects and the isomorphism in the above proposition depend on the 
given projective family. However, if one takes in J a cofinal subset Jo, the ring of cylindrical 
functions does not change, while one has to consider derivations conserving the grading 
just for labels in Jo. 

One could consider as vector fields on M the limits of vector fields arising by cofinal 
subsets JO of J. However, this set of fields could not admit a Lie bracket. A good Lie bracket 
is defined if one considers only cofinal subsets of the type {j E J ] j 1 ju} for a given 
ju E J, as in [5]. 

Differential cylindrical forms are defined in an analogous way as cylindrical functions, 
considering the pullback on M of differential forms on the Mj. Usual differential opera- 
tions as Lie derivatives, exterior derivative, etc. and cylindrical cohomology are estabil- 
ished. 

Here we introduce some examples of projective limits of manifolds, some of which we 
shall use as toy model in the sequel. 

Example 1. For a projective family {Ga, n,~, A}, where G, are Lie groups and the pro- 
jections are homomorphisms onto, the limit of G is a topological group and the projections 
n(y are homomorphisms. Notable examples are compact groups: it is well known that every 
compact group is the projective limit of a family of compact Lie groups [48]. 

As Lie groups are parallelizable, the tangent space at the unit e of G is g := T,G = 
lim ae~TeaGG(y. Then TG = lim,,ATGa = lirnaEA(Ga x gu) = G x g. An exponential 

r&p exp : g --+ G can also bzefined as the%mit of the family of maps (expDl}aEA. This 
exponential map is continuous, but not open in general. 

Every neighbourhood U, of the unit e of G contains the kernel Ha of the projections n,, 
so that G does admit small subgroups if the normal subgroups Hoi are not definitively trivial 
(i.e. if the projective family is not trivial). Therefore, the projective limit of a nontrivial 
projective family of Lie groups cannot be an ordinary Lie group by the Yamabe Theorem 
[49]. However, a projective limit of ordinary Lie groups may be an infinite-dimensional Lie 
group. As a simple example we recall that RN, the space of real sequences with the product 
topology, is a Frechet space, hence an Abelian Lie group and it is the projective limit of the 
Abelian Lie groups Rd, d E N. In this case Yamabe Theorem does not apply: RN admits 
indeed small subgroups. 

We stress that projective limits of a nontrivial family of compact Lie groups cannot be Lie 
groups (as already mentioned in the introduction) since in this case the limits are compact 
groups and Yarnabe theorem does apply. 
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Example 2. Now we give an example of a projective sequence of manifolds whose pro- 
jective limit is a manifold modelled on a FrCchet vector space [35]. 

The set Jk(M, N) of k-jets of smooth mappings between manifolds M and N, with 
dimension m and n, respectively, is an ordinary affine fibre bundle over M x N with fibre 
at (x, y) the linear space Pk(m, n) := #=I Li (Rm, R”), where Li(Rm, Rn) denotes the 
space of j-linear symmetric mappings Rm += Rn. 

There are natural projections nh,k : Jk(M, N) -+ Jh(M, N) for h < k, which in local 
charts are truncations of Taylor polynomials up to order h. As the projections satisfy the 
coherence property, the family {Jk(M, N), ?‘rh,k, N} is a projective sequence of manifolds 
(actually, of affine bundles). 

The projective limit JOO(A4, N) of this sequence consists of the Taylor expansions of 
smooth mappings and is a manifold modelled on a nuclear Frechet space [35]. Actually, the 
limit map JDO(M, N) -+ M x N of the projective family of projection maps is an affme 
fibre bundle projection with fibre on the nuclear FrCchet space P”(m, n) of all symmetric 
formal power series, i.e. the projective limit of the spaces Pk (m, n) (and the product of the 
spaces Z,i(R”, Rn), i 2 1). 

Example 3. A wide class of projective families of manifolds is obtained giving just a 
manifold X and a map 4 : X + X which is local diffeomorphism onto X. The associated 
projective sequence is {M, , TC,,, , NJ where Mn = X and TC~,~ := 6,-n for n < m. 
Projective limits of this type arise in the theory of dynamical systems [47]. 

Since at any point xm E A4, the tangent map T,,,T~,~ : T,, Mm + TxnM,, is a linear 
isomorphism, the projective sequence of tangent spaces is trivial, so that the tangent space 
at x E M is Tx M = lim nENTx, Mm 21 T,, X. As every projective sequence of manifolds is 

surjective, cylindrica&aps are identified with smooth functions defined on some M, . 
A simple but typical example is the p-a&c solenoid E,, , p E N, p > 1, constructed as 

above with X = St and 4 : S’ -+ S’ 4(z) := zp (see [17,21]). The projections are group 
homomorphisms and coverings. 

It is well known that .E7 is isomorphic with the compact Abelian group (R x A,)/B. 
Here A, is the group of p-adic integers, i.e. of formal series x = x0 +x1 p +. . . +xkpk +. . . 
where the coefficients are integers satisfying the inequalities 0 5 Xk < p, k = 0, 1,2, . . . 
and B denotes the subgroup generated by the element (1, u), with u E A, defined by 
Uk =&J&fork = O,l,... We recall that Ap is the projective limit of the sequence of 
discrete groups Z/pnZ; therefore it is a Cantor group, i.e. an uncountable compact Abelian 
group which is a perfect totally disconnected space. 

An isomorphism with Ep can be constructed as follows. Let x,, : R x A,, -+ S’ be the 
epimorphism defined by 

( 2ni 
xn (t, x) = exp ~(I-~(ng+x,p+~~~+x,,-,p”-‘)) . 

> 

Since (xm)Pmm’ = x,, for h < m, the family { xn, NJ is a projective family of maps. There- 
fore the limit map x is defined and is a group homomorphism of R x A,, onto _E,. The kernel 
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of x is the group B so that x quotients to the wanted isomorphism X : (R x Ap)/B + z,,,. 
The p-adic solenoid zp is a connected compact group but it is not arcwise connected, not 
even locally connected. The path components are precisely the images of the continuous 
homomorphism vx : R + _XP defined by q,(t) := [(t, x)], with dense image and kernel 
zero. Moreover, the projection R x Ap += Ap quotients to a (not continuous) group epi- 
morphism zp + A,/uZ, whose fibres are exactly the path components. Thus there are 
uncountably many path components, classified by the Cantor group A,/uZ, each dense 
(see Remarque 1 in [16]). 

Example 4. It is well-known that R is the universal covering of S’ and that rr ’ (S’ ) = 
Z. For every integer p E N, consider the subgroups G, = pZ of Z and the manifolds 
Mp := R/G,, all diffeomorphic to S’ . If on N the ordering is given by p 5 q if p 
divides q (so that G, a G,), the quotient map rrqp :M4 -+ M,,isdefinedforpsq.So 
we have a projective surjective family of finite sheeted coverings of S’, which are group 
epimorphisms. The limit J& of this family is a compact connected Abelian group and 
projects on z,, for every p E N. Therefore, & admits uncountable many path components, 
each dense. 

Example 5. The universal laminated surfaces have been introduced and studied by Nag 
and Sullivan ([41,47] and also [ 111) in their investigations on the system of Teichmtiller 
spaces of Riemann surfaces of different genera. The relevance of these spaces in path in- 
tegral quantization of nonperturbative String Theory was discussed in [40]. For a closed 
(i.e. compact, connected, without border) Riemann surface X, of genus g, equipped with 
a base point *, the authors considered the set Js of all homotopy classes of finite sheeted 
unbranched pointed covering maps (Y : X, -+ X,, where X, is a closed Riemann sur- 
face. This set is directed under the partial ordering given by factorization, i.e. a 5 p 
if there is a commuting triangle of covering maps B = a o 0. The ordered set J8 has 
a minimum 1 corresponding to the identity map on X,. To every a! a monomorphism 
xl(a) : nl(X,, *) + x1(X,, *) is associated. Thus a! 5 /I if and only if Im(nt(B)) c 

Im(nt (a)). 
If a universal covering (X, *) over (X,, *) is fixed, nt (X,, *) is identified with the group 

G (acting on X) of the deck transformations of X, and Im(rrt (a)) with a subgroup G,. 
Thus X, = X/G and a closed Riemann surface S, := X/G, is constructed for each o. For 
a 5 /I the projection n,,~ : SD + S, is defined in the obvious way, so one has a projective 
family {S, , nap, J,] of coverings of X,. Utilizing only normal subgroups of G would give 
a cofinal projective subfamily. 

If g = 1, X, is a torus, (C, *) is a universal covering, Z @ Z is the fundamental group and 
all coverings are also tori. The projective limit is called the universal Euclidean lamination 
Eco. The projective family of tori defining E o. consists of the quotients C/(pZ @ qZ), 
p, q E N. Hence E, = 22, x 22,. 

Each surface X, of genus > 2 has the Poincare hyperbolic half-plane as universal cover. 
The limit Ho0 projects on surfaces of every genus > 2. It is therefore called the universal 
hyperbolic lamination. 
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3. Coo-spaces 

We present here the class of Coo spaces introduced by Friihlicher and Kriegl in [ 191. This 
is a very large category containing Frtchet manifolds and has nice mathematical properties: 
the set of all Cm functions between each pair of Co3 spaces has a canonical structure of 
C” space (Cartesian closedness of the category); moreover the Coo category is closed with 
respect to inductive and projective limits. In particular the last property makes the proposal 
of Frohlicher and Kriegl particularly interesting for us. Previous attempts to generalize 
differential calculus according to similar ideas, are the differential spaces of Smith [46] and 
Chen [ 141. As a consequence of Boman Theorem, their approach is essentially equivalent 
to that of Coo spaces. 

The idea in Cc0 spaces is to define a differential structure on a set X by a family C of 
curves c : R -_) X and a family S of functions f : X -+ R with the property that C and S 
determine each other by the conditions: 

The elements of C are called structure curves or C” curves (or simply curves), those of 
S the structure functions or Coo functions. The pair (C, S) is called a Coo-structure on X 
and the triple (X, C, S) is said a CCO-space. 

A set C of curves in X is generating for (C, S) if S = (f : X -+ R 1 f o c E 
P(R, R) Vc E C}. Analogously, a set of functions S on X is generating for (C, S) if 
C=(C:R+XI~OCEP(R,R)V~ES}. 

A Coo map between C” spaces (Xl, Cl, Sl) and (X2, C2, &) is a map g : X1 --f X2 
satisfying one of the following equivalent conditions: 

g 0 c E c2 vc E Cl, 

f 0 g E Sl v.f E s2, 

fogocEP(R,R) VfcS2, VceCl. 

The set of all Cc0 maps from X1 to X2 is denoted Coo(Xt , X2). 
On an ordinary manifold M a Coo structure (C, S) is given where C := C”(R, M) and 

S := Coo (M, R). The set of Coo maps between two manifolds M and N is precisely the set 
COO(M, N) of the smooth functions. This is a consequence of the Boman Theorem [12]. 
For every Coo space X, the set C of structure curves is precisely Cm(R, X), while the set S 
of structure functions is CcQ (X, R), briefly denoted by Coo(X). 

A Coo structure is defined on products &- X1, admitting nrGT C, as a set of structure 
curves, where C, denotes the set of structure curves in Xr, for t E T. For every pair X1, X2 
of Coo spaces, the set Coo(X1, X2) a canonical Coo structure is given, setting 

C=‘(R, Coo(X1, X.2)) := CCO(R x x1, x2) . 
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For CcQ spaces Xt , X2, X3, one gets the canonical isomorphism 

P(XI, P(X2, X3)) 2: P(X1 x x2, X3). 

45 

This amounts to the Cartesian closedness of the Coo category, which so appears as a general 
scenario for Cartesian closed categories of spaces supporting a differential calculus and 
containing ordinary manifolds; for the proof of Cartesian closedness, see 1.4.3 in [19]. 
However, one encounters serious difficulties to define a good tangent space and a differential 
of CD0 maps, for a quite general Coo space. Of course, one could proceed as in ordinary 
manifolds to obtain the kinematical tangent space according to the following definition. 

Definition 4. Two curves cl, c2 of a C” space X are said to be tangent at x E X if 

cl(O) = ~(0) = x and 

(f d Cl)(O) = (f d c2m Vf 6 s. 

The equivalence class [clx of c is called the velocity vector of c at x. The set of all velocity 
vectors of curves at x is the kinematical tangent space at x, denoted by 7, X. 

In spite of its name, 7.X can fail to have the full structure of linear space. A simple 
example where 7,X is not linear is the following. Take X = Xt U X2 where X1 and X2 are 
orthogonal real lines at 0 in R2. Structure curves in X are smooth curves in R2 with values 
in X. The kinematical tangent space at 0 is identified with X itself, so it is not linear. 

Every f E S does admit a kinematical differential at x defined by 

S,f : 7,X += R u, w 6,f(v,) := (f 0 c)(O), c E ux. 

On IX, the disjoint union Uxcx I,X, a surjective map t : 7X + X is defined by 
t ( v,) := x. If one assumes {Sf I f E S} U {t * f I f E S} as a generating set of functions for 
a Cm structure on IX, the map t : 7X + X is a C” map. We refer to (IX, t, X) as the 
kinematical tangent bundle. In particular, if X is an ordinary manifold, then 7X is just the 
usual tangent bundle TX and 6, f the ordinary differential. 

Even if the kinematical tangent bundle appears as a natural object, there are some contexts 
where another tangent space naturally arises: in the case of a projective limit of manifolds 
M = l@jeJMj, one should assure that good C O” functions admit a differential defined 

on TM = I@je/TMj. A right balance between Coo curves and Coo functions appears 

necessary to obtain good tangent spaces and good differentials for Coo functions. Actually, 
in [ 191 the general theory of Co3 spaces is not fully developed. The main of the book concerns 
Coo calculus for a particular class of locally convex vector spaces, called convenient vector 
spaces by the authors, where straight lines assure a richness of curves to get nice differential 
calculus. 

In a locally convex vector space E the structure curve set C is the family of infinitely 
many differentiable curves, where a curve c : R -+ E is differentiable if the derivate 
k(t) := limh,o(l/h)(c(t + h) - c(t)) exists for every t E R and the map t -+ k(t) is 
continuous. The set C does not really depend on the locally convex topology of E, but only 
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on the system of its bounded sets, so that Coo functions are not necessarily continuous. This 
cannot be avoided in any calculus, if Cartesian closedness is wanted: actually the evaluation 
E x E’ + R, (x, a) cvf e(x) x E E, e E E’ (the dual space) has to be a Coo function 
but it is jointly continuous if and only if E is normable. 

Every continuous linear functional on E is a Cc0 function. A separated locally convex 
vector space E is called a convenient vector space whenever its dual space E’ is a generating 
set of functions for the Cc0 structure of E. The name refers to the fact that this class of spaces 
is Cartesian closed and supports a good calculus. 

The kinematical tangent space at x E E, for a convenient vector space E, is precisely E. 
For every f E Coo(E) the kinematical differential 6, f at x E E is a continuous linear map 
and agrees with the usual differential d, f defined by 

Differential calculus in convenient vector spaces is based on the following theorem (see 
Proposition 4.4.9 of [ 191). 

Proposition 5. Let E be a convenient vector space and f E Coo (E, R). Then the differential 
operator 

d:P(E,R)+Cw(ExE,R), f-df 

is linear and Cm. 

As a consequence every Cm function admits iterated differentials of any order. 
FrCchet spaces are convenient vector spaces and the C” calculus agrees with the C,oO 

calculus (we refer the reader to Appendix A, where a version of Boman Theorem for 
Frtchet spaces is given). Thus each Coo function f on a FrCchet space E is continuous 
and its differential in the Cw calculus agrees with the usual differential df in the Cy 
calculus. 

The theory of convenient infinite-dimensional manifolds has been approached in [27], 
where some manifolds suitable for Algebraic Topology are discussed and in the book [28] 
devoted to Global Analysis. A similar, but different, philosophy has been assumed by 
Michor in his pioniering work [35]. If M is a manifold modelled on Frechet spaces with 
C,oO transition functions, the C,oO functions on M are precisely the Cm functions in the Cm 
structure generated by CL? curves and the C,O” curves agree with the Coo curves provided 
the local model admits bump functions. This is the case, for instance, of nuclear Frechet 
spaces [32]. 

We are interested to consider Coo spaces which are not manifolds in any sense, as in the 
following examples. 

Example 6. The main examples of Coo spaces are manifolds. But in foliation theory dif- 
ferential objects arise that are not manifolds. For generalities on foliations see [13,37]. 
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We recall that a separable, locally compact metrizable space M is said to be a d- 
dimensional foliated space (or a lamination) if it admits a cover by open subsets Ui (the 
charts) and homeomorphisms 

vi I Ui + Di X z, 

where Di is open in Rd and Ti any metric space. The overlap maps are required to be of 
the form 

((Pj O cPL7’)(Z, f> = (hji(Z, f>3 rji(f)) 

and of class Cp” : this means that hji is smooth in the variable z, with all partial deriva- 
tives continuous in both variables. Sets of the type ~~7’ (Di x {t}) glue together to form 
d-dimensional manifolds, whose connected components are called leaves. 

A Clm calculus is accordingly defined: a map f : M + N between foliated spaces 
is said to be of class Cp” if it is continuous, takes leaves to leaves and, for every pair 
of charts p in M and @ in N, the local expression $ o f o (p-’ is of class Clm. The 
inclusion of leaves in M cannot be a homeomorphism; it is a homeomorphism with re- 
spect to the “leaf topology”, obtained by putting on the transversal sets Ti the discrete 
topology. The foliated tangent bundle Ti M is defined as the disjoint union of the tangent 
bundles of the leaves and admits a natural structure of foliated space defined in an obvious 
way. 

A natural Co3 structure on M arises, assuming C to be the set C[F’(R, M) of all CIm 
curves. The range of a Clm curve is contained in a leaf and is a smooth curve in this leaf. 
Accordingly, Coo functions are just families (fe) of smooth real functions, one for each 
leaf e. Thus Cm functions may not contain informations on the transversal topology and 
Cc0 (M, R) agrees with Clm (M, R) only if the topology on M is the leaf topology. The 
kinematical tangent bundle ‘TM coincides as Cw space with the foliated tangent bundle 
and every Cm function admits iterated differentials (along the leaves). Clm maps are pre- 
cisely the Coo functions whose iterated differentials are continuous. This result is a trivial 
extension of Boman Theorem to d-dimensional foliated spaces. 

Examples of foliated spaces where Clm (M) c Coo(M) strictly are the spaces Z,,, Z,, 
E, and Hm introduced in Section 2. Here we shortly give their foliated atlases and we 
refer to Section 2 for notations. 

A two-charts foliated atlas for ZP is given by restricting the quotient map R x A, + Z,, 
respectively, to (0, 1) x AP and (- l/2, l/2) x AP. The leaves of ZP are precisely the images 
of the homomorphisms nx, so they are dense. Hence CLa functions are univocally defined 
by their restriction to any leaf. 

Foliated atlases can be constructed in a general way for the spaces Zoo, E, and H,, 
owing to the fact that they are limits of covering manifolds. As an example, we give a 
foliated atlas for the universal hyperbolic lamination Hoe. For a pointed Riemann surface 
(X,, *) with g > 2, choose a universal cover (X, *). Fix an open subset U of X, such 
that U is the image, by the canonical projection X + X,, of an open subset of the form 
B.G, where B is an open disk contained in a fundamental domain in X for the action 
of G = rr’ (X,), denoted by the dot. By the coherence condition we see that for each 
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normal covering surface S, = X/G,, the inverse image of U by the projection TC~,~ : 
S, + X, is (B.G)/G, 21 B x G/Cm. The groups C, := G/Gal are finite and form 
a projective family of groups, whose limit K is a Cantor group. Thus the inverse image 
n,‘(U) in H, is the inverse limit of the family {B x C,), hence is homeomorphic to 
B x 0; varying U, we obtain a foliated atlas. Also in this context, there are uncountably 
many path components, the leaves, parametrized by the Cantor set B, each dense. Foliated 
atlases in Z, and E, are obtained in an analogous way, by means of the corresponding 
universal covering space. There are uncountably many leaves, parametrized by a Cantor 
set, each dense. 

In this paper we just consider real differential structure on universal laminations E, and 
Hoe. More appropriately, complex structures have been defined on universal laminations 
in [41], in which each leaf of Ho0 is identified with the Poincare hyperbolic half-plane and 
leaves of E, with the complex plane. The Teichmtiller space of Hw is a completion of 
the inductive limit of the Teichmiiller spaces of the surfaces S,. This Teichmtiller space is 
expected to play a relevant role in path quantization of String Theory. 

Example 7. Loop groups are relevant objects in the context of the loop representation of 
Yang-Mills Theories and Gravitation [20,44]. Different notions of loop group are given in 
literature and not all compatible with a Lie group structure. For instance, the loop group 
considered in [lo] is embedded in an infinite-dimensional Lie group, the special extended 
loop group, but it does not contain any nontrivial one-parameter subgroup. 

An interesting example of C” structure has been recently proposed for loop groups (see 
[9,3 11). Let P(B, G) be a principal bundle with G a compact connected Lie group and B 
a connected manifold. Two principal bundles PI (B, G) and P2 (B, G) are said to be gauge 
isomorphic if there exists a bundle isomorphism p : PI + P2 such that cp(xg) = p(x)g, for 
every x E PI and g E G. We denote by 6 the group of gauge automorphisms of P( B, G). 
By a (parametrized) path in B we mean a continuous map (Y : [0, l] + B which is piecewise 
smooth, i.e. the interval [0, l] can be decomposed as finite union of subintervals [si, si+t] 
on which o1 is smooth. A path a! is said to be a loop if o(O) = a(1); the loops + a(1 - s) 
is denoted a- ’ . 

On the set of loops based on *, a composition is defined by 

(aoB>(S) = ;rg; 1), 1 s E 10, l/21, 
s E [l/2, 11. 

The main tool in the loop representation of Yang-Mills Theories is however the loop group 
L, consisting of the equivalence classes of loops based on *, with respect to the relation: 

(Y - /l if HA(a) = HA (fi) (1) 

for every connection A on P (B , G) , see [3 11. Here HA ((Y) denotes the holonomy of A along 
CZ, defined as follows. The parallel transport along cz of the connection A is an equivariant au- 
tomorphism P,” of the fibre P, over the point *; if a point xc E P, is fixed, this automorphism 
is identified with the element HA (a) of the structure group G satisfying P,” (~a) HA (a) = 
xo.WerecallthatHA((IIo~)=H~(~)H~(~)andHA(~-’)=HA(~)-‘.IfA~andA2 
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are gauge equivalent, their holonomy maps are gauge equivalent, i.e. there exists g E G 
such that HA, (a) = gHA, (a) g-’ for every loop (11. 

The set 13, becomes a group if its product is defined by [a] o [p] := [a o /I] ; the quotient 
map HA : Lc, + G, HA ([a]) = HA (a) is a homomorphism of groups, called the holonomy 
map of the connection A. 

A Cc*3-structure on .Cc, is generated by the set of curves 

(c : R + C,, c (2) = [utll, 

where t IU cq is a homotopy of loops, i.e. the map 

h:Rx[O,l]+B, h(t,s):=cr,(s), 

is continuous and there exists a partition 0 = ~1 < sq < . . . -c Sk = 1 of the unit interval 
such that, for every i, 

h : R X (Si, Si+l) + B 

is smooth. With respect this Coo structure the group operations in L* are Coo. 
This notion of C” map is essential to characterize holonomy maps of smooth connections 

in the space Hom(C,, G) of group homomorphisms. The holonomy map HA associated to 
a smooth connection A is a Cc0 map: for every curve in Cc,, the curve R 3 t - HA (at) E G 
is smooth since it is obtained (locally) as solution of a vector field on G depending smoothly 
on the parameter t (see II.3 in [25]). The correspondence H : A 13 HA was widely studied 
(see [3 l] and the bibliography therein). We summarize their results in the next proposition, 
where by HomOO (L*, G) we denote the space of Coo homomorphisms of Lc, in G. 

Proposition 6. The map H dejines a one to one correspondence (up to gauge equivalence) 
between smooth connections on smooth G-principal bundles on B and the elements of 
Hornm(L, G). 

In [31] analogous Co3 structures are considered on path bundles and generalized path 
principal bundles. 

4. Products of manifolds 

Here we consider a product space M = ntET Mt of ordinary manifolds M,, where the 
cardinality of the index set T is assumed to be 5 2 ‘0. M is the limit of the projective 
surjective family of manifolds { Mj , nij, .I], where J denotes the directed set of all finite 
subsets j of T and Mj = ntEj Mt. For a subset S c T we denote ns the projection of M 

onto n,,s Mt. 
We recall that a canonical C” structure is given on M, where the set C of structure curves 

consists of families c = {c~}~~T of smooth curves ct in Mt. The ring CyP(M) is in general 
only a generating set of functions: f.i. functions in CyltW(M) are Coo. We will consider 
also countably cylindrical CD0 functions, i.e. functions f = nFof~o which are the pullback 
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of a Coo function fT, : ntETo M1 -+ R, for a countable TO c T. Countably cylindrical 
Cc0 functions on M which are not cylindrical do exist; we are indebted to A. Kriegl for the 
following example of a locally cylindrical function on RN and for the next proposition. 

ExampIeS. Let h E COO(R, R) , supp h C [--l/2, l/2], h (0) = 1; the function f : 
RN + R, f (x) := C,“=, h (x0 - n) xn is Cw(RN), locally cylindrical but not cylindrical. 

Proposition 7. Every f E Cc0 (RN) is locally cylindrical. 

Proo$ By Theorem A.2 in Appendix A, every Coo function f on the Frechet space RN is 
a Ccm function, hence df : RN x RN -+ R is continuous. Let now U x V be a connected 
open subset of RN x RN such that Idf (x, v) 1 < 1 for every (x, v) E U x V. We can assume 
that V = flnGN V, where V, are open subsets of R which equal R, except for a finite set 
No of indices. 

Using linearity of df in the second variable one proves that df (x, u) = 0 if (x, v) E U x V 
and u, = 0 for n E No. For x, y E U and a smooth curve c E RN joining x and y, one has 

1 

f(Y) = f(x) + 
s 

df (c(s) ,t (s)) ds. 

0 

If X, = yn for every n E No, one can choose c in U such that c (s)~ = 0 Vn E No to get 

f(x) = f(Y). 0 

In this case the restriction to cylindrical smooth functions appears unnecessary: using a 
standard notion of derivative in Frechet spaces one obtains the wider class Cyl,O” of smooth 
functions. 

On a product of manifolds M = nreT Mr we can construct analogous examples of Cc0 
functions which are locally cylindrical, but not cylindrical, if at least one of the factors Mt 
is not compact. We have even simple examples of Cw functions which are not continuous, 
hence not ever locally cylindrical. Let M be (2 x S)N where S is an ordinary manifold and 
2 denotes the space consisting of two elements. So M = 2N x SN and Co3 curves in M 
are maps s Q {& x c, (S)}fiEN, where cn is a smooth curve in S for every n. Choose any 
noncontinuous function h on 2N. The function f on M defined by f (6, s) = h (4)) 6 E 
2N, s E S, is Coo but not continuous. 

The main result in this section is that Coo functions on a reasonable product M of manifolds 
are continuous and locally cylindrical, hence cylindrical whenever M is compact. First we 
prove that, in a product of connected manifolds, every Coo function is countably cylindrical. 
We need some lemmas. 

Lemma 8. Let (M, g) be an ordinary connected Riemannian manifold, dg the metric dis- 
tance, {x,),~N a sequence in M converging to x, such that n”d, (x,, x) 5 p for some 
p > 0 and every n E N. There exists a smooth curve c in M such that c (1/2n) = x,, for 
everynandc(0) =x. 
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Proof The points x,, and x belong definitively, say for 12 > fi, to a normal chart (U, exp- ’ ) ; 
we can assume that x = exp(O), U = exp B where B is an open ball in T,M, so small 
that d,(exp u, x) = ljvll, IJ E B (see for instance Theorem 5.7 Ch.VIII in [30]). Since the 
sequence {v~}~,z, un = expp’(x,), satisfies n”1jv,, (1 5 p, we can construct a smooth 
curve y in B with the properties that y (s) = 0 for s 5 0, ~(1/2~) = v,, and that 

Y[I/2 n+‘, 1/2n] is the segment between un+t and v,; by construction, y is flat at every 
IJ, (see Proposition 2.3.4 in [ 193). The curve s w c(s) = exp y(s) is well-defined and 
satisfies c (l/2”) = x, for it > Ti. As for the remaining points, first suppose that TI = 1 so 
that only the point x1 does not belong to the curve c. Consider any curve c’ in the interval 
[l/4, +oc) with the properties that c’(s) = xi for s > l/2, c’(1/4) = x2, with c’ flat at 
x2, and compose the curve c with c’. In the general case repeat the procedure adding all the 
remaining points. 0 

Lemma 9. LetM = nnGN M, be aproduct of connected manifolds and (xk}keN a sequence 
in M converging to x. Then there exist a subsequence {xk,) and a Cw curve c in M such 
thatc(1/2’)=xk,foreveryrEN,c(O)=x. 

Proof Choose a metric gn on every M, and put d, (x, , yn) = dgn (x, , yn) ( 1 +dgn (x, , y, )) - ’ , 
so that d, (x, , yn) 5 1 for xn , yn E Ma. M is a metric space with the distance d(x, y) := 
~~Z~(1/2n)d,(xn, yn). Extract from {xk} a subsequence {xk,} such that {r’d(xk,, x)} is 
bounded, so that even the sequence {rrdgn (xk,;n , x,)} is bounded for each n. Using the 
Lemma 8 construct a smooth curve c, : R + M,, with c, (l/2’) = Xk,,n and c, (0) = xn, 
for every n. Then define c(s) = {c,(S)},,N E M. 0 

Lemma 10. Let M = ,-,,& M,, be a product of connected manifolds. Then every f E 
Coo (M) is continuous. 

Proof As M is metrizable we have only to prove that f is sequentially continuous. Assume 
that, for some sequence {Xk} of M converging to x, there exists E > 0 such that 1 f (Xk) - 
f (x)1 > E for all k; by considering eventually a subsequence, construct by Lemma 9 a 
C” curve c such that ~(1/2~) = Xk, c(0) = x. Then f o c E P(R, R) and f (xk) = 

(f 0 c) (1/2k) -+ (f 0 c) (0) = f ( x , contradicting the assumption. ) 0 

Let now M = &r Mr and q E M. For every subset S c T we identify MS = n,,, Mt 
with {x E M 1 xt = qt, Vt +! S} and, for x E M, we denote by xs the element defined by 
(xs)~ = xy if t E S, (xs)~ = qt if t E T - S. Moreover we consider the subset MO of M 
consisting of the elements x with support {t E T 1 xt # qr ) at most countable. 

Lemma 11. Let M = &r Mr be a product of connected manifolds. Every f E Coo (M) 
is sequentially continuous on MO. 

Proof Let xk + x, with Xk, x E MO; there exists a subset S C T, S at most countable, 
containing the supports of x and of the Xk; the function f E Coo (M), if restricted to MS, is 
a Coo function on Ms; then we apply Lemma 10 to get f (xk) += f(x). 0 
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The following theorem is a consequence of Mazur’s results on product of metrizable 
spaces [34]. 

Theorem 12. Let M = fltET Mt be a product of connected manifolds. Then every f E 
C”(M) is continuous and countably cylindrical. 

Proof The restriction of f to MO is sequentially continuous. By Theorem II of [34] there 
exists a countable subset Sf c T such that f(x) = f (xsf) for x E MO. We will prove that 
f(x) = f (xsf ) for every x in M. We identify the space of the subsets of T with 2T endowed 
with the product topology and we prove that 40, : 2T + R, am := f (xs) - f (xsnsf ) is 
sequentially continuous. Let S, + S, so that, for large n, (xs,)t = (xs)t holds for every 
t E T. Applying Lemma S, we can construct, for every t E T, a smooth curve cy : R --+ Mt 
satisfying ~,(1/2~) = (xs,)~ and ~~(0) = (x~)~. The curve c = {ctJreT is a Coo curve and 
satisfies c(1/2”) = xs,, c(0) = xs. Since f o c E P(R, R), we get f (xs,) + f (xs), 
proving that pX is sequentially continuous. By Theorem III of [34] we conclude that pX is 
continuous. For every finite set S, we have pX (S) = 0 and, applying the results in Section 
1, Example 3 of [34], we obtain that qX(S) = 0, for every subset S of T. 

Then f = nzf fst , where fss is the restriction of f to Msf . Continuity of f follows by 
Lemma 10. 0 

Now we come to the problem of defining the differential of Cc0 functions on products of 
manifolds. In the case of RT every f E Cm(RT) admits a differential: as f is countably 
cylindrical, we are reduced to the case off E Coa (RN) discussed in Proposition 7, obtaining 
C”(RT) = Cyly(RT). Therefore the differential off is df, as defined in Section 2, it is 
continuous and satisfies the chain rule. Now we shall prove that a similar property holds for 
Co3 functions on products of manifolds M = n,,, Mt. For a curve c in M we put 

d(s) := {et (s)}t,r E TM. 

Theorem 13. Let M = fltET Mt be a product of connected geodesically complete Rie- 
mannian manifolds. Then every f E Coo (M) is locally cylindrical. 

Proof In an ordinary complete Riemannian manifold we denote by yX,V the geodesic curve 
starting from the point x with velocityu and by 0 the flow of the spray defined by the metric. 
We recall that yX,” (s) = t (@ (s, u,)), where t is the tangent projection and uX = (x, u), 
and that ,‘X,V (s) = Q, (s, u,). By @(s + h, u,) = @(h, @ (s, u,)), we have 

Yx>u (s + h) = ~y,,,(s),)i,,,(s) @I (2) 

for every s, h E R. 
We come now to M = nteT M,.ForxEM,uET,MandsER,wedenotebyy,,,(s) 

the product b’x,,u,(~)h~T~ where yX, ,Z)t are geodesic curves in Mt , and call geodesic curve 

at x with velocity 2) the curve yX,v : R + M, s w vX,v(s). The geodesic curve yX,V 
satisfies formula (2). 
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We define now df : TM + R by 

df (~3 u> :=(f 0 ~x,v) (0). (3) 

Let s w (x(s), V(S)) be a curve in TM. Applying Boman Theorem one easily recognizes 
that the map p : R2 + R, (p(s, h) := f(y,(,),,(,)(h)) is smooth. Therefore the map 
s cvf Y$Po(~.~) = df(n(s), II(S)) is smooth. This proves that df is a Coo map, so that df is 
continuous by Theorem 12. 

Using the Hopf-Rinow Theorem to each component, we get that for every x, y E M 
there exists a geodesic curve y (possibly not unique) joining x to y, so that 

f (Y) - f 6) = /- (f i v> (s) ds. 
0 

We prove that (f o v) (s) = df (v (s) ,p (s)). One has indeed by formulae (2) and (3) 

Fio ; (f (v (s + h)) - f (Y(S))> 

= ,Bio k (f (Y~(~).P(~) (h)) - f (Y Cd)) = df (Y (~1~ 3 (s)) . 

Then we remark that df (x, rv) = rdf (x, u) for every u E T,M and r E R (one can use 
simply a reparametrization of curves) and, in particular, that df (x, 0) = 0. Therefore the 
subset W of TM on which Idf (x, u)l < 1 is an open neighborhood of the zero section. 

We fix xc E M and construct an open set U c W of the form U = fl,,, U,, with 
U, = TMt except for a finite set To of indices, and such that xc E t(U). If (x, v) E U with 
ut = 0 for t E To, then also (x, ru) E U for every r E R, and the condition Idf (x, ru) 1 = 
lrdf (x, v)l < 1 for every r E R implies that df (x, IJ) = 0. The set V := s(U) is an open 
neighbourhood of x0. If x, y E V satisfy xt = yt for t E TO, there exists a geodesic curve 
y in V joining x to y whose components yr are constant for t E TO. Then 

f(y) - f(x) = / df (v(s), P(s)) ds = 0. 
0 

This proves that f is cylindrical on V, i.e. frv = n$Ogyv with g E Cc0 (qOV). 0 

Every ordinary manifold admits a complete metric [42], so we get the following result. 

Theorem 14. Let M = nrET Mt be a product of connected manifolds. Afunction f on M 
belongs to Coo (M) if and only if it belongs to Cyl,O” (M). If the factors Mr are also compact, 
then every f E P(M) is cylindrical. 

Remark. The above theorem is a version of Boman Theorem characterizing locally cylin- 
drical smooth functions on products M of connected manifolds and proves that the Cc0 
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calculus introduced by Frohlicher and Kriegl agrees with the differential calculus proposed 
by Ashtekar and Lewandowski in the case of products of compact connected manifolds. In 
particular, the kinematical tangent space ‘TM agrees with the tangent space TM and, for 
each f E COO(M) = Cyltm(M) and x E M, the kinematical differential 6, f agrees with 
the differential d, f defined in Section 2, so that 

&(s)f(c(s), +)I = (f 0 c)(s) Vs E R 

for every curve c. Moreover, the Coo functions are continuous and admit iterated differentials. 
When some factor Mr is not connected, the product M is not connected. However, Theo- 

rem 13 applies to each connected component (of M), which results a product of connected 
manifolds. In this setting the Coo functions on M could not be continuous, but they are 
locally cylindrical (hence continuous) on each component. 

Example 9. An interesting example of product of compact Lie groups has been proposed 
as a compact extension of the group B of gauge transformations of a principal bundle 
P (B, G) with compact connected gauge group G in [5]. We recall that G is the group of 
smooth sections of the associated bundle P [G] on B, whose fibre on x E B is a group 
G, isomorphic with G. The group 6 is naturally included in 6 = nxEB G, by q : 6 -+ 

CT 17(g) := {&))&I . Assuming the cardinality of B ( space or space-time) to be 5 2”‘J (i.e. 
assuming the continuum hypothesis) we obtain that every Coo-function on G is continuous 
and cylindrical (Theorem 13). 

The group 8, a natural structure of infinite-dimensional Lie group can be given. If B is 
compact, 6 is a Lie group modelled on a nuclear Frechet space. As remarked in Section 3, 
this implies that a Cm structure for 6 is given, admitting Cy (R, G) as structure curves and 
C,“(G, R) as structure functions. 

Proposition 15. Let P(B, G) a principal bundle with B and G compact. The inclusion 
q:GC,GisaF continuous (but not open) map. Its image is dense. 

Proo$ First we prove that r] is C O”, i.e. that images of curves in 6 are curves in c. Let s ‘u 
g(s) be a curve in 6. We have to prove that for every x E B the curve s * (g(s))(x) E G, 
is smooth. This is true since the projection n,, if restricted to 6, agrees with the evaluation 
map ev, : 6 + G, which is C,oO by Corollary 11.7 of [35]. This also implies that the 
inclusion is continuous. 

To prove density we only observe that, given a finite set {xi} c B and gi E GXi, there 
exists g E 6 with gXi = gi for every i. 

Completeness of 6 implies that every homeomorphic image of 6 in a topological group 
is closed, hence the inclusion 6 c, c cannot be open. ??

We stress, however, that the group c is not a compactification of 6 endowed with the 
topology of Frechet Lie group. 
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5. Projective limits of manifolds 

The category of Coo spaces is closed with respect to projective limits. In particular, the 
limit M of a projective family of manifolds { Mj, nij, J) admits a canonical Cc0 structure, 
where the set of structure curves is 

C I= {C : R + M; Xj o c E C”(R, Mj) Vj E J}. 

This is precisely the set of Cm curves in nj,, Mj laying in M C nj,, Mj, SO that 

where Cg(nj,, Mj) denotes the ring of the restrictions to M of Coo functions on n,,, Mj; 
the ring CyZF(n,,, Mj) is analogously defined. 

Proposition 16. Let M = l@j,~ Mj be a projective limit of manifolds. Then 

(1) CYST = CYlg(nj,, Mj); 
(2) if the factors Mj are compact connected manifolds, a Coo function on M is cylindrical 

if and only if it admits a Coo extension to n,,, Mj. 

Proo$ (1) Let f E CyP(M), f = n;fj for some fj E C”(Mj). Define f” = p:fj 

where pj : n,,, ML + Mj is the Cartesian projection. One easily checks that f fl is 
well-defined and that f = f u o iM, where iM : M + fl,,, Mj is the canonical in- 
clusion. Consider now any smooth cylindrical function h on n,,, Mj, with h = p$“ho, 

Jo = (jl,..., j,I and ho : nje_,o Mj + R smooth. It is easy to prove that f = ibh 

is cylindrical. Actually, choose J dominating Jo and define f; : Mj + R, f$) = 
ho(nij,('), ...) ITJ,~~(X)). Then check that f = nrf;. 

(2) This is an immediate consequence of (1) andof Theorem 13. 0 

The ring CyZ”(M) is a generating set of functions for the canonical Coo structure and 
appears just a minimal choice for the ring of smooth functions. 

The consistency of COO(M) for a projective limit of manifolds M could be a problem 
not so easily estabilished as in the case of products of manifolds discussed in the above 
section. The main reason is that the paucity of Coo curves produces a plenty of Co3 functions. 
Even if projective limits of compact connected manifolds are connected, they could not be 
path connected, not even locally path connected (see for instance Z,, Z:,, E, and H, 
discussed in Sections 2 and 3). If M admits many path components, there exist Coo functions 
on M which are not continuous, hence not cylindrical. 

If M is the limit of compact connected manifolds Mj, then every Coo function admitting 
a Coo extension to niGJ Mj is cylindrical, hence continuous. One can ask whether each 
continuous Cc0 function f on M is cylindrical. Tiesze Extension Theorem assures that f 
admits a continuous extension f’ to n,,, Mj . This extension could not be a Coo map, hence 
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one cannot assure that f is cylindrical. An example is given on .XP (see later). Anyway, 
Theorem II of [34] assures that f”, hence f, is countably cylindrical. 

Now we briefly discuss tangent space. Obviously, TM = 1EjeJTMj is a Coo space and 

the projection t : TM + M is a Co3 map. 
As M is a Coo space, it admits also a kinematical tangent space TM. A good functoriality 

would require that IM agrees with TM, as in the case of products. This condition allows 
us to differentiate every C” function on TM. If Co3 (M) = Cy1,00(M), the tangent spaces 
agree, but this condition is not necessary, as we shall see discussing the examples below. 

Jco (M, N). A simple example of projective limit of a surjective family of non compact 
manifolds is the space .P(M, N) introduced in Section 2, Example 2, which is a Frechet 
manifold modelled on a nuclear Frechet space, the product of a sequence of finite dimen- 
sional vector spaces. By Theorem A.2 in Appendix A, the Cc0 functions on P(M, N) are 
precisely the Ccm functions. Each local expression of a Ccm function f on .P(M, N) is 
locally cylindrical by Theorem 14, so that f itself is locally cylindrical. 

Of course, even in this case the restriction to smooth cylindrical functions appears to be 
unnecessary. 

The universal laminations. We return to the spaces ZP, Zoo, Eco and Ho0 introduced in 
Section 2. These spaces are foliated spaces and projective limits of manifolds. Accordingly, 
they admits two canonical CD0 structures. Luckily, these Coo structures agree. Let M stand for 
ZP, Zoo, E, or Hw and {Mj, nj, J] for the corresponding projective family of manifolds. 
We have to prove that Clm curves in M are precisely the paths c : R + M such that all 
Xj o c are smooth. Let c be a Cp” curve in M. Then the projection of c in MjO is smooth, 
where ju denotes the minimum of J, as one can easily prove using the foliated atlas given 
in Section 3. Since each nj>j, is a covering of Mjo, even the projection of c on Mj is smooth. 
Conversely, let c = { cj }j ??J be a thread of smooth curves, then c is continuous and contained 
in a leaf, since leaves are the path components. Composing c with the foliated charts we 
get that c is a Cp” curve. 

Coming to C” functions, we immediately see that 

CylCO(M) c Clw(M) c P(M) 

We recall that the last inclusion is proper (see Example 7, Section 3). To show that even the 
first inclusion can be proper, define f : R x AP --f R by 

f(t,x) := E$sin($(t - (x~+xlp+...+x,lp”-‘))). 
n=l 

The function f is a uniform limit of linear combinations of characters, so it is continuous. 
One easily recognizes that its quotient map f” : .Ep + R is well-defined and a Clm map. 
However, J is not a cylindrical map. 

Coming to tangent spaces we see that 

IM=zM=TM 
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as Cm spaces. The first equality was proved in Section 3. We have to prove that TM = Tl M. 
For every x E M we have T,M = I@jcJTxjMj 21 TxCx since l@jeJTjMj is a trivial 

limit and C, is a covering of every Mj. To show that TM 2: FM as CD0 spaces we can use 
the same arguments we used above to prove that Ca3 curves and Cp” curves on M agree. 

In this example the lack of path connectedness yields a huge quantity of C30 functions. 
Nevertheless, this excess of C” functions does not create serious problems for differential 
calculus. Actually, each Coo function is differentiable on TM owing to the fact that the 
various notions of tangent space agree. We see therefore that Cm differential calculus can 
work even if the lack of continuity for Coo functions could be an unpleasant aspect. In this 
example the relevant ring of functions appears to be C,m (M), which lies between Cy130 (M) 
and COO(M). 

Projective limits of manifolds in gauge theories. In the loop quantization of 2D Yang- 
Mills Theories and Loop Quantum Gravity the tool of projective limit has been proven 
useful to embed the configuration space A/G of the theory in a compact space A/G on 
which measures are defined suitable for quantization. Here A denotes the space of principal 
connections of a principal bundle P(B, G), with G a compact connected group and 6 de- 
notes the group of gauge transformations. In the literature many proposals of this procedure 
can be found, whose starting point is a suitable family of multiloops, graphs or lattices, 
used as index set for a projective family. Here we briefly discuss the projective limits of 
manifolds introduced in [5]. 

Let B be a real analytic connected manifold. By a parametrized edge we mean a home- 
omorphism e from [0, I] into B such that er(c,l, + B is an analytic embedding. An 
unparametrized edge is an equivalence class of parametrized edges with respect to repara- 
metrization by analytic bijections of the interval [0, 11. The end points of an edge e, called 
the vertices of e, and the range e* do not depend by such reparametrizations. A graph y in 
M consists of finitely many unparametrized edges ei, such that 
(1) for ei # ej, e; fl e; is contained in the set of vertices of ei and ej ; 
(2) every edge of 1/ is at both sides connected with another edge. 

The set L of all the graphs in M can be given a partial order, where yt 5 ~2 whenever 
each edge of yt can be expressed as a composition of edges of y2 and each vertex in yt is 
a vertex of ~2. Due to analyticity of edges, L is a directed set. 

For every edge e, denote by & the closed normal subgroup of G consisting of gauge 
transformations acting as the identity over the vertices of e. Define an equivalence relation 
-,onAby 

A -e A’ if Are* = A;e, mod &. 

We denote by A, the quotient space and by n, : A -+ A, the canonical projection. It 
is well known that, for a given orientation on e, the parallel transport along e defined by a 
connection A, denoted P, * , belongs to Eq( P,(o), P,(l)), the space of G equivariant maps 
from the fibre P,(o) to the fibre P,(I). The parallel transport map P, : A + Eq ( P,(O), P,(I ,) 
quotients to a one-to-one map A, : A, -+ Eq(P,(o), P,(l)). By means of A,, a (analytic) 
manifold structure on A, can be given, which does not depend on the chosen orientation: for 
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x, x’ E B the space Eq(P,, P,!) is a compact manifold diffeomorphic to G and is canon- 
ically diffeomorphic to Eq ( Pxt, Px). For a graph )/, one considers the compact connected 
manifold 

and the projection ny : A + A,,, ny := l-Ly n,. For )/ < y’ a projection rrYYl : 
A Y I + A, is defined by nYfY o nyt = n2. This gives a projective surjective family of 
compact connected manifolds whose limit A is a compact connected space containing A as 
dense subset. Elements of 2 are called generalized connections. Analogous constructions 
can be given using suitably defined oriented edges and oriented graphs. 

The affine space A of the smooth connections is modelled on a nuclear Frechet space, in 
the case where B is compact (for the case where B is not compact, see [ 11). The inclusion of 
A in 2 is Coo and continuous, but it is neither a homeomorphism nor a Coo diffeomorphism 
with its image. This holds also for the inclusions of the various Sobolev completions of A 
used in the literature. In this sense A is not a true compactification. 

A projective family of Lie groups (6,) TC~, 15) is also introduced where &, := G/cY, with 
G1/ := neey Ge and nY is the canonical projection. The projective limit of this projective 

family of Lie groups is precisely the group c considered in Section 3. The action of 6 on 
A extends to an action of c on 2. 

In gauge theories the primary object would be A/G, the limit of the projective family of 
orbit spaces A, /Gy, also considered in [5]. These orbit spaces fail to be genuine manifolds -- 
in general. However, the authors proved that A/E is homeomorphic to A/E so that a 
differential calculus can be defined on A/G by means of c-equivariant cylindrical smooth 
maps on 2. 

The comparison of Co3 functions with cylindrical smooth functions on 2 is a delicate 
problem, due to the complexity of the index set and nontriviality of projection maps. Even 
the investigation of the path connectedness of 2 could reveal a nontrivial problem. For the 
Abelian case a general method is reported in Appendix B. 

One could hope that the projective limit 2 shares some features with the universal lam- 
inations. Even in this case indeed the projective family is obtained taking quotients of the 
same flat space. However, the treatment of these limits requires techniques beyond the 
ones developed in this paper. Moreover, the space 2 could be too large for the needs of 
Quantum Field Theory. Actually, some projective subfamilies (as lattices) or other pro- 
jective families (based on multiloops or spin networks instead of graphs) are used in 
the literature, to get analogous compactifications of 2. Physical and mathematical cri- 
teria have to be adopted to select a convenient compactification. A good mathematical 
requirement could be to dispose of a suitable Boman Theorem to get a fine differential 
calculus. 
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Appendix A 

It is well known that standard differential calculus works well for finite dimensional 
vector spaces and for Banach spaces and that a lot of inequivalent differential calculi can 
be given in general locally convex vector spaces. However, nearly all the main notions of 
infinite differentiability agree in Frechet spaces [7,24] with the Cc? differentiability defined 
as follows. 

Let U c E be an open subset of a complete locally convex vector space. A mapping 
f : U -+ F is said to be Cj on U if the following conditions hold: 
(1) limh,a(l/h)(f(x + hy) - f(x)) = Df(x)y where Df(x) : E + F is a linear map, 

forx E U,y E E,h ER. 
(2) The map Df : U x E + F, (x, y) -+ Df (x)y is jointly continuous. 

The set of these mappings is denoted by CE (U, F). The spaces C,k(U, F), k > 1, are 
defined by recursion, as the set of the maps in C,k-’ (U, F) such that Dk-’ f : U x Ek-’ -+ 
F is Ct.. Then C,“(U, F) := nkrlC,k(U, F). 

More results on Ccm calculus can be found in [24] or [36]. In Frechet spaces the C,Y 
calculus agrees even with the Cc0 calculus. We give the proof of this statement which one 
can find in [ 191, entangled with more general results. A similar procedure has been adopted 
to obtain the results in Section 4. We recall that in a Frechet space E the structure curves 
are precisely the Ccm curves. 

Lemma A.1. Let E be a Frichet space and f a C” function on E. Then f is continuous. 

ProoJ Suppose f is not continuous at x. Then there exists a sequence (x, }~EN converging to 
x such that ]f(x,) - f (x)1 > E for some E > 0. Extract from {x,},~N a subsequence (xnk} 
such that {kkd(x, x,,)) is bounded, where d is a distance on E generating the topology 
of E. Appying Lemma 2.3.4 of [19], construct a curve c in E such that c(0) = x and 
~(1/2~) = xnk for every k. The assumption f E CW(E, R) would imply f (x,,) + f(x), 
giving a contradiction. 0 

The following theorem is the Boman Theorem for Ccm calculus on Frechet spaces. 

Theorem A.2. Let E be a Frt?chet space and f : E -+ R. The following statements are 
equivalent: 
(1) f is a CWfunction; 
(2) f is a C,OOfunction. 

Prooj (1) implies (2): For x, y E E the map h w f (x + hy) belongs to C”(R, R). We 
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shall prove that the map df : E x E + R defined by 

df(x, Y> = h’io llh(f(x + hy) - f(x)) 

is a Cc0 map, jointly continuous and linear in the second variable. 
To get that df is aCOO map, we have to prove that themapp : t -A q(t) := df(x(t), y(t)) 

is smooth, for every pair of curves t ?rf x(t), t - y(t) on E. Consider the Cc0 map 
@ : R2 + R defined by @(t, h) = f@(t) + by(t)). The Boman Theorem on R2 gives 
@ E Cm(R2, R). Since 

$W, hILo = df(x(O, y(t)> = v(t), 

the map q is smooth. Therefore df is a C” map. 
By Lemma A.1 df is continuous, Obviously, df is homogeneous in the second variable. 

Hence it is linear by Proposition 4.4.22 of [ 191. 
We have proved that f E Cj (E, R) with df E Cc0 (E x E, R). By recursivity, this proves 

that f E C,OO(E, R). 
(2) implies (1): For f E C,OO(E, R) and every curve c E C,OO(R, E), the composition 

f o c E C,“(R, R) = C”(R, R), so that f is a C” function. 0 

Appendix B 

Here we refer to the last example in Section 5 and investigate the path connectedness of 2 
for G = U( 1). As proved in [4], one can reduce to a trivial principal bundle P = B x U( 1) 
so that A = A’(B), the space of smooth l-forms on B. The group B = C?(B, U(1)) acts 
on A by translations A, Q A, + g-’ aug, so that the action defines a homomorphism of 
the Abelian group B in the Abelian group A. Thus also d/G is an Abelian group. 

The triviality of P and commutativity of U (1) imply that c = U (1)‘) that d, is canon- 
ically isomorphic to U( 1) E(y) (where E(y) is the number of edges of y) and that the 

. . 
projectrons rrY,Y~ are group homomorphisms. Hence, A is a compact connected Abelian 
group. Moreover, there exists a short exact sequence of compact connected Abelian groups 

-- 
O+U(l)+~+~+d/&+O. 03.1) 

We summarize some of the classical results given in [16] about path connectedness of 
compact connected Abelian groups. 

Proposition B.l. Let X be a compact connected Abelian group. Then the dual group Xi 
is discrete and torsion fuee. The following conditions are equivalent: 
(1) X is path connected; 
(2) Ext;(X+, Z) = 0; 
(3) every element of X is of the form eih where h E Hom(X?, R). 

If Xi is countable, the above conditions are equivalent to the requirement that Xi is free. 
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For every graph y, the dual group A$ of d, is the free group generated by the edges in 
y, provided that to every edge ek of y the character 

Xek : A, + U(l), xek(Ay) := e 4, A 

is associated, where A E A is any representative of A,. The dual group 3’ of 2 is the 
direct limit of the dual groups _A$. Every character X of 2 belongs to some A$, so that 

x=C ekCynkXek andforxc dwehave 

(A> X) = (A,, X) = nX,“k(Ay). 
k 

In particular, if x = A is a smooth connection, it verifies 

(A, x) = eih(X), 

where h E Hom(x’, R) is defined by h(X) = CekGy nk i,, A. Also the examples of 

generalized connections given in [4] are of the form ei’ with A. E Hom$, R), so one can 
hope that condition (3) is always verified. 

Utilizing the exact sequence 

where z := 8/ U(l), and Proposition 4, Section 5.5 in [29], we obtain the exact sequence 

-- 
&&(A/&, Z) + Ex@+, Z) + Ext@+, Z) --, 0, 

x+ 
where Extd(G , Z) = 0, since the Abelian group cis compact and path connected. There- 

-- 
fore Exth((d/G)+, Z) = 0 would imply that Ext#‘, Z) = 0. This proves that 2 is path 
connected if and only if d/Q is path connected. 
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